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Introduction
 Point Cloud Compression

Point Cloud

Geometry Compression

Attribute Compression

 A learning-based framework for attribute compression.
 Contributions

 An attribute-oriented entropy model.
 State-of-the-art compression performance.

Goal: Given a 3D point cloud, its geometry is assumed to have been
transmitted separately and we mainly focuses on the task of point cloud
attribute compression.
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 Paper, code and project: https://fatpeter.github.io/

 Framework

 Initial Coding  Deep Entropy Model
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(b) RAHT Tree

 Formulation
Given transformed coefficients 𝑅𝑅, we factorize its probability distribution
at the attribute channel 𝑖𝑖 with initial coding context 𝐈𝐈 and inter-channel
correlation 𝐂𝐂(𝑖𝑖)as follows:

We adopt Region Adaptive Hierarchical Transform
(RAHT) for initial coding and construct the RAHT
tree for context feature extraction.

 Context Modelling
By exploring context information from the RAHT tree and the previous
encoded attributes, we model the initial coding context 𝐈𝐈𝑗𝑗 and the inter-
channel correlation 𝐂𝐂𝑗𝑗

(𝑖𝑖)with our Initial Coding Context Module and Inter-
Channel Correlation Module.

During training, we approximate the estimated distribution with the actual 
distribution by minimizing the cross-entropy loss:

Method

Problem Definition

 Quantitative Results

Experiments

(a) RAHT (b) G-PCC
BPP: 3.46 PSNR𝑦𝑦: 34.63 BPP: 2.11 PSNR𝑦𝑦: 34.60 BPP: 2.07 PSNR𝑦𝑦: 34.63

(c) Ours

 Qualitative Results

 Downstream Tasks
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